Energy Harvesting: advanced MEMS to NEMS

NiPS Summer School July 7-12th, 2015 Fiuggi, Italy

Francesco Cottone

NiPS lab, Physics Dep., Università di Perugia francesco.cottone at unipg.jt

- MEMS- to NEMS-based energy harvesters and potential applications
- Micro/nanoscale energy harvesters: scaling issues
- Nonlinear and frequency-up conversion approaches

Conclusions

MEMS- to NEMS-based harvesting devices and potential applications

MEMS-based drug delivery systems

Body-powered oximeter

Leonov, V., & Vullers, R. J. (2009).

Bohm S. et al. 2000

Heart powered pacemaker

D. Tran, Stanford Univ. 2007

Pacemaker consumption is around **40uW**.

Beating heart could produce **200uW** of power from heat differentials, physiological pressures, and flows and movements, such as blood flow

Micro-robot for remote monitoring

A. Freitas Jr., Nanomedicine, Landes Bioscience, 1999

A 1mm-20mg nanorobot flying at 1 m/s requires F ~ 4 microN and P ~ 41 uW.

The input power for a 20mg robotic fly is **10 – 100 uW** depending on many factors: air friction, aerodynamic efficiency etc.

MEMS- to NEMS-based harvesting devices and potential applications

Piezoelectric

Jeon et al. 2005

ZnO nanowires Wang, Georgia Tech (2005)

Chang. MIT 2013

piezoelectric AIN thin layer Aluminium

seismic mass

M. Marzencki 2008 - TIMA Lab (France)

D. Briand, EPFL 2010

MEMS- to NEMS-based harvesting devices and potential applications

Electrostatic and Electromagnetic

Mitcheson 2005 (UK) Electrostatic generator 20Hz 2.5uW @ 1g

EM generator, Miao et al. 2006

Cottone F., Basset P. ESIEE Paris 2013-14

Le and Halvorsen, 2012

MEMS- to NEMS-based harvesting devices and potential applications

NEMS-based energy harvesting devices

ZnO nanowires -Xu F. (2010) tensile stress test

Chen, X. et al (2010) Nano letters 0,6 V - 30nW

Cha, S. (2010). Sound-driven piezoelectric

nanowire-based nanogenerators.

Advanced materials

Qi, Yi, 2011 Nano Letters PZT Nanoribbons

Virus-directed BaTiO3 nanogenerator Jeong, C. et al (2013). ACS nano,

Objective : 100 µW/cm³ of power density

Who's the best for MEMS/NEMS ?

Technique	Advantages 🙂	Drawbacks 😕
Piezoelectric	 high output voltages well adapted for miniaturization high coupling in single crystal no external voltage source needed 	 expensive small coupling for piezoelectric thin films large load optimal impedance required (MΩ) Fatigue effect
Electrostatic	 suited for MEMS integration good output voltage (2- 10V) possiblity of tuning electromechanical coupling Long-lasting 	 need of external bias voltage relatively low power density at small scale
Electromagnetic	 good for low frequencies (5-100Hz) no external voltage source needed suitable to drive low impedances 	 inefficient at MEMS scales: low magnetic field, micro- magnets manufacturing issues large mass displacement required.

NiPS Summer School 2015 – July 7-12th - Fiuggi (Italy) – F. Cottone

First order power calculus with William and Yates model

By introducing the damping ratio, namely $\zeta_T = (\zeta_e + \zeta_m) = d_T/2m\omega_n$, the position transfer fuction is expressed by

$$H_{xf}(\omega) = \frac{X(\omega)}{Y(\omega)} = \frac{\omega^2}{-\omega^2 + 2i\omega(\zeta_e + \zeta_m)\omega_n + \omega_n^2}$$

First order power calculus with William and Yates model

The instantaneous dissipated power by electrical damping is given by

$$P(t) = \frac{d}{dt} \int_{0}^{x} F(t) dx = \frac{1}{2} d_T \dot{x}^2$$

The velocity is obtained by the first derivative of steady state amplitude

$$\dot{X} = \frac{\omega r^2 Y_0}{\sqrt{(1-r^2)^2 + (2(\zeta_e + \zeta_m)r)^2}},$$

 $()^3$

that is

$$P_{e} = \frac{m\zeta_{e} \left(\frac{\omega}{\omega_{n}}\right) \omega^{3} Y_{0}^{2}}{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2} + \left[2(\zeta_{e} + \zeta_{m})\frac{\omega}{\omega_{n}}\right]^{2}}$$

At resonance, that is $\omega = \omega_n$, the maximum power is given by

$$P_e = \frac{m\zeta_e \omega_n^3 Y_0^2}{4(\zeta_e + \zeta_m)^2} = \frac{m^2 d_e \omega_n^4 Y^2}{2(d_e + d_m)^2} \qquad \text{or with acceleration amplitude} \\ A_0 = \omega_n^2 Y_0.$$

for a particular transduction mechanism forced at natural frequency ω_n , the power can be maximized from the equation

$$P_{el} = \frac{m\zeta_e A^2}{4\omega_n (\zeta_m + \zeta_e)^2}$$

Max power when the condition $\zeta_e = \zeta_m$ is verified

10

PIEZOELECTRIC CANTILEVER

 $m_{eff} = m_{beam} + 0.32m_{tip} = lwh\rho_{si} + 0.32(l/4)^3\rho_{si}$

Boudary conditions	C1
doubly clamped	1,03
cantilever	0,162

Boudary conditions	Uniform load xsi	Point load xsi
doubly clamped	32	16
cantilever	0,67	0,25

$$P_{el} = \frac{m\zeta_{e}A^{2}}{4\omega_{n}(\zeta_{m} + \zeta_{e})^{2}} = \frac{\left(lwh\rho_{si} + 0.32(l/4)^{3}\rho_{mo}\right)}{8\omega_{n}\zeta_{m}}A^{2} = \frac{\left(lwh\rho_{si} + 0.32(l/4)^{3}\rho_{mo}\right)}{16\pi C_{n}\sqrt{\frac{E}{\rho_{si}}}\frac{h}{l^{2}}\zeta_{m}}A^{2}$$
At max power condition $\zeta_{e} = \zeta_{m}$

$$A = 1g$$

$$\zeta_{m} = 0.01$$

$$h = l/200$$

$$w = l/4$$

$$P_{el} = \frac{\rho_{si}/800 + 0.32 \cdot 64\rho_{mo}}{\frac{16}{200}\pi C_{n}\sqrt{\frac{E}{\rho_{si}}}\zeta_{m}}A^{2}l^{4}$$

PIEZOELECTRIC CANTILEVER

PIEZOELECTRIC CANTILEVER

PIEZOELECTRIC CANTILEVER

By assuming
$$A = 1g$$

$$\zeta_m = 0.01$$

$$h = l / 200$$

$$w = l / 4$$

Alex Zettl, California Univ. 2010

AFM cantilever

Piezoelectric conversion

Strain-charge	Stress-charge
$\mathbf{S} = \mathbf{s}_{\mathbf{E}} \cdot \mathbf{T} + \mathbf{d}^t \cdot \mathbf{E}$	$\mathbf{T} = \mathbf{c}_{\mathbf{E}} \cdot \mathbf{S} - \mathbf{e}^t \cdot \mathbf{E}$
$\mathbf{D} = \mathbf{d} \cdot \mathbf{T} + \mathbf{\varepsilon}_{\mathbf{T}} \cdot \mathbf{E}$	$\mathbf{D} = \mathbf{e} \cdot \mathbf{S} + \boldsymbol{\epsilon}_{\mathbf{S}} \cdot \mathbf{E}$

Characteristic	PZT-5H	BaTiO3	PVDF	AlN (thin film)
d ₃₃ (10 ⁻¹⁰ C/N)	593	149	-33	5,1
d ₃₁ (10 ⁻¹⁰ C/N)	-274	78	23	-3,41
k ₃₃	0,75	0,48	0,15	0,3
k ₃₁	0,39	0,21	0,12	0,23
$\mathcal{E}_{\mathcal{T}}$	3400	1700	12	10,5

$$k_{31}^2 = \frac{El.energy}{Mech.energy} = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$$

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a piezoelectric material. IT's defined as the ratio between the mechanical energy converted and the electric energy input or the electric energy converted per mechanical energy input

NiPS Summer School 2015 - July 7-12th - Fiuggi (Italy) - F. Cottone

$$FoM_V = \frac{\text{Useful Power Output}}{\frac{1}{16}Y_0\rho_{Au}Vol^{\frac{4}{3}}\omega^3}$$

Bandwidth figure of merit

$$\mathrm{FoM}_{\mathrm{BW}} = \mathrm{FoM}_{\mathrm{V}} imes rac{\delta \omega_{1 \, \mathrm{dB}}}{\omega}$$

Frequency range within which the output power is less than 1 dB below its maximum value

Galchev et al. (2011)

Mitcheson, P. D., E. M. Yeatman, et al. (2008).

Galchev et al. (2011)

Mitcheson, P. D., E. M. Yeatman, et al. (2008).

below its maximum value

At micro/nano scale direct force generators are much more efficient because not limited by the inertial mass!!!

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = F(t) \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases}$$

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

Power fluxes

$$m\ddot{z}\dot{z} + d\dot{z}^{2} + \frac{dU(z)}{dz}\dot{z} + \alpha V_{L}\dot{z} = F(t)\dot{z}$$

$$P_{m}(t) = F(t)\cdot\dot{z}(t) \qquad P_{m}(t) = -m\ddot{y}\cdot\dot{z} = -\rho l^{3}\cdot\dot{z}$$

Nonlinear MEMS electrostatic kinetic energy harvester

Electrostatic generators

NiPS Summer School 2015 - July 7-12th - Fiuggi (Italy) - F. Cottone

mass

Electrostatic generators

INPUT SIGNAL: walking man RMS acceleration: 0.39 grms Generated Power: 1.34 µW Bias voltage: 20 V MEMS direction: X

F. Cottone et al., 2014 IEEE 27th Int. Conf. Micro Electro Mech. Syst, 2014.

Conclusions

- Many potential applications are waiting for powerful MEMS/NEMS harvesting system to enable self-powering features
- Inertial vibration energy harvesters are very limited at small scale
 -> direct force piezoelectric/electrostatic devices are more efficient at nanoscale
- Design challenges
 - Materials with high electromechanical coupling,
 - Cheap miniaturization/fabrication processes
 - Very efficient conditioning electronics
- In general the specific application decides if one or many micro-VEH are the best choice with respect to one macro-scale VEH

Thank you Jiasyun O Copenhagen Denmark United Kingdom Isle of Man Leeds Hamburg Liverpool and Dublin 0 Bremen Berlin Birmingham C Poz lands Bristol London Wro Cologne Germany Belgium/ 11 11 Prague Luxembourg **Czech Republic** • X Paris UNIVERSITY of LIMERICK Vienna O Munich OLLSCOIL LUIMNIGH Zurich Austria 1316 Switzerland France Geneva PARIS Lyon Slovenia E Biscay oZag 0 Turin Croatia Bo Hei o Bilbao Rome Monte 7aran

NiPS Summer School 2015 - July 7-12th - Fiuggi (Italy) - F. Cottone